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Fig. 1: We propose REACT, a method to efficiently update object nodes in a 3D scene graph in real-time by leveraging
computationally efficient visual features. In this work, we pursue two objectives. Firstly, we aim to cluster identical object
instances to facilitate attribute sharing among multiple object nodes within a 3D scene graph. Secondly, we tackle the
challenge of instance matching in long-term, semi-static scenarios.

Abstract— Modern-day autonomous robots need high-level
map representations to perform sophisticated tasks. Recently,
3D scene graphs (3DSGs) have emerged as a promising al-
ternative to traditional grid maps, blending efficient memory
use and rich feature representation. However, most efforts to
apply them have been limited to static worlds. This work
introduces REACT, a framework that efficiently performs real-
time attribute clustering and transfer to relocalize object nodes
in a 3DSG. REACT employs a novel method for comparing
object instances using an embedding model trained on triplet
loss, facilitating instance clustering and matching. Experimental
results demonstrate that REACT is able to relocalize ob-
jects while maintaining computational efficiency. The REACT
framework’s source code will be available as an open-source
project, promoting further advancements in reusable and up-
datable 3DSGs1.

I. INTRODUCTION

Nowadays, autonomous mobile robots are expected not
only to navigate between locations but also to understand
the environments they traverse. In recent years, the research
community has developed various advanced map represen-
tations as alternatives to traditional occupancy grid maps.
These innovations aim to enable robots’ scene comprehen-
sion by incorporating semantic spatial information. Among
these developments, 3D scene graphs (3DSGs) have emerged
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as a promising solution, offering efficient memory storage
while maintaining a rich scene representation. [1].

Significant efforts have been devoted to enriching 3DSGs
by incorporating more complex information into object
nodes, such as embeddings from visual-language models
(VLMs) [2], [3]. These rich features facilitate the execution
of higher-level tasks, allowing mobile robots to respond to
complex commands more effectively. However, computing
the features comes with substantial computational expense,
with some methods requiring days of processing or multiple
GPUs to complete [2], [3]. Additionally, many constructed
maps lack updatability and reusability, restricting their ap-
plicability to simulators or static environments. The lack of
efficient methods to relocalize objects on the fly has the
drawback that, if the environment has changed, the rich fea-
tures embedded in the nodes of the previously built 3DSGs
might be unusable when a robot revisits an environment.

In this work, we propose a method to leverage computa-
tionally efficient features for real-time instance matching and
relocalization. By transferring pre-computed attributes and
features, robots can efficiently adapt to new environments
while reusing the rich information in the constructed 3DSGs.
Moreover, in real-world settings, there are often many iden-
tical objects, such as sets of tables and chairs in study halls
or similar mugs in kitchens. We propose that embracing
these visual similarities during 3DSG construction can po-
tentially reduce storage and computational overhead. This
improvement can be achieved by sharing attributes between
identical nodes such as images, 3D representations (meshes,
point clouds), and neural embeddings. An illustration of the
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proposed method is shown in Fig. 1.
In particular, we propose the REACT framework, the core

contributions of which include:
• A novel approach for recognizing similar objects and

distinguishing different ones using an embedding model
trained on triplet loss.

• A method for clustering object instances with similar
appearances to facilitate attribute sharing.

• A framework for matching and relocalizing object nodes
in a 3DSG while detecting missing or novel objects in
real-time as the robot revisits an environment.

• Experimental evidence that clustering object instances
can enhance instance matching performance, demon-
strated by comparing our proposed method with a
greedy approach that does not employ attribute clus-
tering.

• The REACT framework’s source code will be made
publicly available as an open-source project, promoting
further advancements in reusable and adaptable 3DSGs.

II. RELATED WORKS

A. 3D scene graphs

3DSGs have recently emerged as an efficient yet expres-
sive representation for both indoor and outdoor environ-
ments [4]–[7]. By abstracting objects and spatial concepts
such as rooms and buildings into nodes, and connecting these
nodes with edges that represent their relationships, 3DSGs
effectively scale to larger scenes [4], [5]. Notably, Hughes
et al. [4] have demonstrated the feasibility of constructing
such rich metric-semantic graphs in real-time, enhancing the
potential for their application in robotic tasks.

Efforts have been made to leverage 3DSGs as enablers for
executing natural language commands. Rana et al. presented
Sayplan [8], which converts pre-built 3DSGs into JSON files,
using them as input for a large language model (LLM) to
perform semantic searches on sub-graphs, exploiting the hier-
archical nature of 3DSG. More recently, ConceptGraphs [2]
and HOV-SG [3] have pioneered embedding object nodes
with features from visual-linguistic models (VLMs). The
authors demonstrated the ability to query for task-related
objects using the capabilities of LLMs, applying these to
various downstream tasks.

However, a major limitation in all of these approaches is
the lack of reusability of the constructed scene graphs. Many
works operate under the assumption of a static environment
when querying information from the scene graph [8], or use
interim measures like querying potential locations using an
LLM [2]. In this work, we propose REACT as a potential
step forward in enhancing the reusability and updatability
of 3DSGs.

B. Object change detection

In computer vision, several recent works have addressed
object matching and relocalization. Wald et al. [9] propose a
multi-scale triplet network to detect instance-level changes
in a scene using TSDF patches extracted from RGB-D
data. The model identifies feature keypoints on the source

object and the entire target scene, then computes an optimal
transformation to relocalize the source object. More recently,
Zhu et al. [10] propose a framework to parse a 3D indoor
environment as an evolving scene. Their approach recon-
structs objects with increasing accuracy as more temporal
scans become available, and compares their embeddings with
their respective counterparts in other scenes. These methods
generally require preprocessed point clouds and are not
optimized for real-time deployment in robotic systems.

To detect and track object changes, Bore et al. [11]
assume that semi-static objects primarily move short dis-
tances within a location, with a probability of “jumping”
to another location. Their work samples the posterior for
objects’ global movements and tracks local changes analyti-
cally using Kalman filters. By forming probabilistic models
for objects, their work can handle input ambiguity such
as visually similar objects. In contrast, our work leverages
visual similarity to enhance matching performance while still
optimizing the likelihood of the new positions of objects.

Another line of research that explores measures to help
robot adapt to evolving environments is to detect evidence of
changes within the built maps and update them accordingly.
Panoptic Multi-TSDF [12] maintains a collection of object-
wise multi-scale TSDFs, tracking object changes by counting
the number of inconsistent voxels over overlapping sub-
maps. POCD [13] updates a volumetric map by introduc-
ing an object association module to find correlations be-
tween observations and tracked objects, estimating geometric
changes in the scene. Most recently, Schmid et al. introduces
Khronos [14], which aims to build a spatio-temporal repre-
sentation of a scene to infer the states of objects at different
time points. While these frameworks mark objects not seen
in their previous locations as absent or removed, our work
actively matches each object instance with its correspondence
as the robot revisits an area.

III. PROBLEM FORMULATION

The problem formulation is based on the following as-
sumptions:

1) A robot performs multiple mapping sessions within
the same indoor environment, with no dynamic agents
present during any session.

2) A localization method, such as 2D SLAM [15], [16],
visual-inertial odometry [17] or ground truth informa-
tion (for simulators), provides the robot’s pose during
the mapping process.

3) Scene changes are limited to rigid transformations. As
defined in [9], rigid changes encompass the addition,
removal, and relocation of objects within the scene
between two mapping sessions. Detection of non-rigid
changes, e.g., changes in objects’ appearances, lighting
conditions, or operational states is beyond the scope of
this work.

4) The environment may contain multiple identical objects
(e.g., identical chairs in a meeting room, or a plate set
on a kitchen table).



Formally, at time t, the scene consists of a collection of
m object instances Ot = {I1t , . . . , Imt }, where I denotes a
single object instance. The scene evolves over time such that
the set of q objects at time t+1 is Ot+1 = {I1t+1, . . . , I

q
t+1}.

Let us define an identity function I(Iit , I
j
t+1) ∈ {0, 1},

such that I(Iit , I
j
t+1) = 1 when Iit re-appears at t + 1 as

Ijt+1, and I(Iit , I
j
t+1) = 0 otherwise. In other words, Iit and

Ijt+1 represent the exact same object recorded at different
time. Then, the relationship between times t and t + 1 is
defined in terms of sets Mt:t+1, At:t+1, and Nt:t+1. The
Matched set Mt:t+1 includes object instances that remain
in the scene, but might have moved; formally Mt:t+1 =
{(Iit , I

j
t+1) | Iit ∈ Ot ∧ Ijt+1 ∈ Ot+1 ∧I(Iit , I

j
t+1) = 1}. The

Absent set At:t+1 ⊆ Ot includes those that were in Ot but
do not appear at time t+1; and the New set Nt:t+1 ⊆ Ot+1

those that only appear at time t+ 1.
The objective is to identify the set of instance associations

{Mt:t+1, At:t+1, Nt:t+1} between the object sets Ot and
Ot+1 and update our map such that all instances in Mt:t+1

have their position updated, all instances in At:t+1 are
removed, and all instances in Nt:t+1 are added.

IV. METHODOLOGY

To address the problem outlined in Sec. III, we propose
REACT, whose pipeline is illustrated in Fig. 1. Initially, a
robot patrols a scene and constructs an initial 3DSG (we
will discuss the process of building the 3DSG in Sec. V-A).
Then, we manually group images of identical instances and
train an embedding model to facilitate comparisons between
object nodes. Subsequently, we utilize this trained model
to cluster the object nodes. When the robot returns to the
same environment, as it constructs a new 3DSG of the
environment, it clusters the newly created nodes and matches
them with their correspondences from the previous 3DSG.
Finally, it updates the object nodes association.

A. Identity function

In practical scenarios involving multiple identical ob-
jects, it is impossible to evaluate the identity function I
as discussed in Sec. III unless the environment is under
constant observation. However, it is a logical assumption
that semi-static objects undergo minimal movement between
consecutive mapping sessions. For example, while it is
impossible to correctly match indistinguishable chairs in a
kitchen, it is reasonable to expect that a chair placed next to
a particular table would be more likely to be the one found
around that same table at the next session than another one
further away. Therefore, we propose to approximate I by
decomposing it into two sub-problems: visual similarity and
motion minimization.

Firstly, we assess if two objects exhibit strong visual
similarity; i.e., V (Ii, Ij) ≤ γ, where V (·) ≥ 0 quantifies
the visual difference between two object instances and γ
is a predetermined threshold parameter. Evaluating visual
similarity while mapping is challenging due to different
viewpoints and occlusion across sessions. Furthermore, as
previously discussed, we assume scenes contain multiple

identical object instances that, barring their positions, share
numerous attributes such as visual appearance, semantics,
geometry, and functionality. To harness this similarity and
improve matching robustness, we organize identical object
instances into instance clusters, denoted as C, treating each
object as part of a collective entity. This clustering approach
enables us to gather more comprehensive information about
indistinguishable objects by aggregating multiple instances
of the same type. Thus, across sessions, we approximate
visual similarity as: V (Iit , I

j
t+1) ≈ Ṽ (Ck

t , Cl
t+1), Iit ∈

Ck
t , I

j
t+1 ∈ Cl

t+1. We will discuss how to build these clusters
in the next subsection.

Secondly, after matching clusters Ck and Cl in terms of
visual similarity, we associate instances within these clusters
by minimizing the total distance traveled by all matched
object instances, formulated as an linear sum assignment
problem [18]. Let us define the assignment function 1kl :
Ck×Cl → {0, 1} mapping instances from Ck to Cl. Assuming
|Ck| ≥ |Cl|, minimizing the total distance traveled is solved
by:

1∗
kl = argmin

1kl

Ck∑
Ii

Cl∑
Ij

D
(
pi, pj

)
1kl(I

i, Ij)

subject to:
∑

Ii∈Ck

1kl(I
i, Ij) = 1 ∀Ij ∈ Cl

∑
Ij∈Cl

1kl(I
i, Ij) ≤ 1 ∀Ii ∈ Ck

(1)

where pi represents the position of instance Ii, pj denotes
the position of instance Ij , and D ≥ 0 is a spatial distance
function.

After this minimization, we obtain the approximation of
the identify verification, i.e., I(Ii, Ij) ≈ 1∗

kl(I
i, Ij) with

Ii ∈ Ck and Ij ∈ Cl.

B. Instance matching

During each mapping session at time t, the robot con-
structs a set of m object instances Ot. Based on visual
similarity, we form n instance clusters, such that Ot =
C1
t ∪ · · · ∪ Cn

t , n ≤ m. As similar instances are merged
into an instance cluster Ci

t , i ∈ [1, n], they share attributes,
including the semantic class ci, the collection of raw images
of the object instance taken at different viewpoints Vi =
{v1, . . . , vo}, as well as the average visual embedding fi
that describe them (elaborated in Sec. V-B). To enable
instance matching, each instance cluster keeps track of the
position history of each object instance, formally labeled
Pj =

{
pjt | t ∈ [0, . . . , T ], j ∈ [0, . . . ,m]

}
for instance j.

In a subsequent mapping session, a new set of instance
clusters Ot+1 = {C1

t+1, . . . , C
q
t+1} is generated. After visu-

ally comparing and matching the instance clusters from both
sets, we infers the movements of objects between time t and
t+ 1 by optimizing (1).

In our implementation, the robot operates in compact
indoor environments, and the observed object-level changes
are typically minor relocalizations. As a result, the Euclidean



distance is a natural choice for D(·) in (1). However, the
selection of the distance metric D(·) may vary depending on
the specific application and operating environment. E.g., for
operations encompassing a larger area with multiple rooms
and floors, one may build a traversability graph and let D(·)
be the shortest travel distance between two points using the
A* algorithm.

V. IMPLEMENTATION

A. 3D Scene Graph with Instance Memory and Object
Clusters

Our 3DSG updating system builds upon the foundation
of Hydra [4], [5]. As the robot patrols an environment, it
incrementally constructs a hierarchical 3DSG in real-time.
The nodes of this graph represent various spatial concepts
across different layers. These layers, from top to bottom,
include buildings, rooms, traversable spaces, and objects. The
edges of the graph denote inclusion relationships among the
nodes.

Our work focuses on the targets the robot will interact
with during its assignments, specifically the object nodes.
Since our method operates at the instance level, we modified
Hydra to segment the object mesh using results from an off-
the-shelf instance segmentation model.

Moreover, we extended the 3DSG from Hydra in three
ways. Firstly, drawing inspiration from [19], each object node
maintains its own Instance Memory, which includes raw im-
ages of each object instance taken from multiple viewpoints.
Each instance view produces a binary mask associated with
its corresponding RGB scene image. Secondly, to facilitate
instance matching, each node’s Instance Memory contains
identifiable visual embeddings, which will be discussed in
Sec. V-B. Finally, when multiple nodes of identical objects
form an instance cluster, a “cluster” node is added and their
instance memories are combined, resulting in an extensive
image library with more object viewpoints and an average
of all instances’ visual embeddings.

B. Learning for Attribute Clustering and Transfer

Clustering object instances and re-identifying them in
subsequent scans necessitate a method for measuring the
visual similarity between objects, i.e., V (·) as described in
Sec. IV-A. To this end, we implement an end-to-end structure
as described in FaceNet [20], employing its pipeline. The
embedding model’s backbone is based on EfficientNet [21],
resulting in a visual embedding f(·) for each instance view.
After the first mapping session, we train this embedding
model employing a triplet network architecture and mini-
mizing the triplet loss

L =

N∑
i=1

[
∥fa

i − fp
i ∥

2
2 − ∥fa

i − fn
i ∥22 + α

]
(2)

where fa is the anchor patch embedding, fp is the positive
patch embedding, and fn is the negative patch embedding.
The margin α indicates the amount of separation between
anchor-positive pairs and anchor-negative pairs. In this work,
we set α = 1.

Intuitively, minimizing the triplet loss reduces the Eu-
clidean distance between visual embeddings of similar ob-
jects, regardless of viewing angles, while maximizing the
distance between embeddings of different objects. To opti-
mize training efficiency, we utilize the online triplet mining
strategy popularized by [20], which aims to generate semi-
hard negative samples for each anchor-positive pair and train
on them.

As demonstrated in Fig. 1, the dataset for training the
model is formed after the robot’s first visit to an environment.
Using the framework described in Sec. V-A, we construct
a 3DSG with object nodes containing raw RGB images
of objects from different viewpoints. As our methodology
focuses exclusively on the appearance of objects; thus, we
mask out background elements in all comparison images.
We interactively group objects with similar appearances into
instance clusters, create training and validation datasets, and
train the model with them. Empirically, we train the model
for 30 epochs using Adam as the optimizer, with an initial
learning rate of 0.001. Since the robot may observe some
objects only briefly during its first scan, we augment the
training dataset by horizontal flipping followed by random
rotations between −10◦ and 10◦ with uniform probability.

The trained embedding model then generates visual em-
beddings for each object node by retrieving the median of
all RGB images in its Instance Memory. By thresholding
the Euclidean distance between their respective embeddings,
the object nodes are clustered and their embeddings are
averaged into the cluster node. When matching instances
during subsequent visits to the same environment at time
t+1, new object nodes are also clustered and compared with
their respective counterparts from time t. As each cluster
k contains an averaged embedding fk from all views of
each instance, we select the Euclidean distance between two
embeddings as the visual difference measurement V (·) (see
Sec. III)

V
(
Ck, Cl

)
= ∥fk − f l∥22 (3)

This approach offers two main benefits. Firstly, it sub-
stantially reduces the computational complexity, particularly
in environments with multiple similar objects. Secondly,
the comparisons are more robust. Specifically, instead of
comparing an object to a previous instance that might have
been observed from a distance or with limited viewing
angles, we compare it to an averaged visual embedding that
encapsulates a more comprehensive representation of the
object.

C. Offline and online instance matching

As outlined in Sec. III, we assume that objects experience
minimal movement between mapping sessions. To this end,
for each cluster in t+1 that matches in t, we perform instance
matching using a modified Jonker-Volgenant algorithm with
no initialization [18], [22] implemented in Scipy to optimize
(1).

When conducting instance matching offline, the process
is straightforward, as all information about the objects is



Fig. 2: Illustration of the online matching process. As the robot gathers sensor data, the embedding model generates visual
embeddings and stores them in an embedding library E. Each node of the current 3DSG may query for the average embedding
from E. After the nodes on the current graph are clustered, they are compared against clusters of the same semantic class
in the reference graph and nodes from the reference graph are updated.

available. During online operations, the robot incrementally
gathers information about the environment, necessitating
an adaptive process. Fig. 2 illustrates REACT’s matching
process in online mode. Given that the embedding model
is the most computationally intensive component of our
framework, we maintain a queryable embedding library E
to store embeddings for all views of objects encountered
during the session. As object nodes are formed, they query
their respective visual embeddings from E and retrieve the
median value when comparing. It is important to note that
due to the incremental nature of the process, matching
may require several registered views of an object to be
accurate. Consequently, each time the 3DSG updates, the
entire process—including attribute clustering and comparing
embeddings—is re-executed on all nodes with the newly
gathered information. Thus, given the same amount of regis-
tered input, the results will eventually converge to the same
as the offline version. Since these processes are CPU-based,
they should not significantly compromise the performance of
the pipeline as we will demonstrate in Sec. VI-B.3.

VI. EVALUATION

A. Experimental set-up

To evaluate our proposed method, we aim to address the
following research questions:

• How effectively does the learned embedding model rec-
ognize similar objects and differentiate between distinct
ones?

• Does attribute clustering improve the system’s perfor-
mance and accuracy?

• Can the entire pipeline accurately match instances in
real-time as the robot patrols the environment?

We evaluate our framework, REACT, using one simulated
and three real-world datasets. The simulated flat dataset,
introduced by Schmid et al. [12], consists of two trajectories
within a flat where objects are moved, added, and removed
between runs, providing ground truth segmentation, depth
maps, camera poses, and change information for benchmark-
ing. For 3DSG construction, we focus on classes undergoing
changes, excluding cups and plates due to their small size and

distant visibility. Although the 3RScan data set consisting of
various scenes with rigid object changes exists [9], at the
time of writing, we could not use it due to an open problem
with that software preventing us from obtaining the ground
truth instance segmentation information for the RGB images.

For our real-world datasets, data is collected using a Hello
Stretch 2 mobile platform equipped with an Astra 2 RGB-D
camera. Data collection occurs in three locations within our
department building: the coffee room and two study halls.
All scenes are mapped twice, with objects moved, removed,
or added between sessions. For all experiments except for
the runtime evaluation, we perform instance matching offline.
The details of all our datasets are shown in Tab. I. The ground
truth data for these datasets are recorded based on the 3DSGs
built by our method described in Sec. V-A. Thus, we do not
account for errors from incorrect 3DSG construction, e.g.,
incorrect semantic labels, and splitting or merging of object
nodes.

We utilize YOLO11 [23] for object semantics in real
environments, without retraining the instance segmentation
model. From the 80 pre-trained COCO classes [24], we select
couch, dining table, and chair. Experiments were conducted
on a laptop with an Intel I7-11800H CPU and an NVIDIA
GeForce RTX 3070 Mobile GPU. Stretch 2’s 2D LiDAR,
combined with the SLAM toolbox [16], provides the robot’s
localization.

B. Experimental results and ablation study
1) Change detection accuracy: We evaluate the change

detection performance of REACT against a baseline version
without attribute clustering. This alternative version utilizes
a greedy strategy by iteratively matching object nodes with
their highest visual correspondences. Both configurations use
the same embedding model with an optimal visual difference
threshold γ. Given the nature of models trained on triplet
loss [20], the values of γ for each embedding model need
to be selected individually. In our evaluations, we explore γ
ranging from 0 to 5 in 0.2 increments and identify the optimal
thresholds for each configuration to maximize the aggregated
F1 score for all sets: Matched, Asbsent, and New. Tab. II
presents two metrics: the F1-score of the Matched (F1M ),



TABLE I: Description of the scenes used in our experiments. The numbers in brackets represent the category based on
visual appearance, e.g., 2 chairs(1,2) means 2 chairs of type 1 and 2 chairs of type 2

Scene Objects New Absent

Flat 2 chairs(1), 1 table(1,2), 2 pictures(1,2), 1 bed(1), 1 chair(2), 1 journal(3), 1 bed(2), 1 journal(2), 1 bed(1)1 picture(3,4,5), 1 lamp, 1 journal(1,2) 1 table(3), 1 laptop, 1 coffee machine

LabFront 15 chairs(1), 3 tables(1) 1 chair(2,3,4) 3 chairs(1)

CoffeeRoom 7 chairs(1), 1 chair(2), 2 chairs(3) 1 chair(4), 1 chair(5) 1 chair(1), 1 chair(3)1 table(1,2,3), 2 couches

StudyHall 25 chairs(1), 3 chairs(2), 2 chairs(3), 2 chairs(1), 1 chair(4) 1 chair(2), 2 chairs(3),
10 tables(1), 1 table(2), 2 couches 1 table(1), 1 couch

TABLE II: Change detection accuracy on multiple scenes
with optimal visual difference threshold.

Scene Method F1M ↑ F1N ↑ F1A ↑
∑

D(m) ↓

Flat REACT 1.0 1.0 1.0 6.19
w/o clustering 1.0 1.0 1.0 6.19

LabFront REACT 1.0 1.0 1.0 4.76
w/o clustering 1.0 1.0 1.0 4.76

CoffeeRoom REACT 1.0 1.0 1.0 4.58
w/o clustering 0.96 1.0 0.67 6.96

StudyHall REACT 1.0 1.0 1.0 26.56
w/o clustering 0.98 0.90 0.86 45.26

New (F1A), and Absent (F1N ) sets, along with the total
travel distance of objects between scenes in metres (

∑
D),

as it relates to optimizing our matching function in (1). In
this experiment, matching is considered successful when an
object matches with an identical one.

A comparison of the performance of both configura-
tions across all thresholds is illustrated in Fig. 3. The re-
sults indicate that REACT maintains consistent performance
across most thresholds. With optimal threshold selection,
REACT matches or exceeds the performance of the non-
clustering configuration across all available scenes. REACT’s
advantages become more apparent on large scenes with
a high density of identical objects in varying orientations
like StudyHall. Fig. 4 provides a qualitative comparison of
the two methods on the scene CoffeeRoom. The optimal
threshold for REACT was found to be γ = 2.8, while the
non-clustering configuration had a threshold of γ = 3.8.
In the non-clustering configuration, the greedy matching
may lead to suboptimal matches, as demonstrated by the
matching of two chairs from opposite ends of the table
despite the existence of better alternatives. A higher value
for γ in this configuration facilitates the matching of more
identical chairs, but it also increases the likelihood of false
positive matches, such as the gray chair being matched with
the yellow one. Conversely, REACT correctly matches all
identical instances. Moreover, by optimizing objects’ travel
distances post-matching, the results are more accurate and
sensible, minimizing unnecessary significant shifts in the
objects’ positions.

Fig. 3: F1 scores over thresholds of REACT and its non-
clustering baseline on all scenes.

Fig. 4: Qualitative comparison of change detection on the
scene CoffeeRoom.

TABLE III: Instance matching performance.

Method Precision Recall F1 Avg. FPS

SuperGlue 0.82 0.45 0.59 4.45
SuperGlue (masked) 0.80 0.64 0.71 4.45
Ours 0.97 0.98 0.98 86.99



Fig. 5: Runtime of embedding model relative to the number
of instance masks per frame

2) Ablation Study: Triplet Model Matching Performance:
To gauge the embedding model’s ability to recognize sim-
ilar objects between scans, we compare it against Super-
Glue [25], a learning-based feature-matching method. This
comparison employs the pre-trained indoor model with de-
fault configurations and a matching threshold of 6.0, as sim-
ilarly applied in [19]. We conduct two separate experiments
for SuperGlue, one with the background masked out—the
same setup as our method—and one with background context
as proposed in the original work.

For this analysis, we use a 3DSG built from the valida-
tion scans across all datasets and perform node matching
analogous to the attribute clustering process. SuperGlue
matches nodes when a single pair of instance views is
matched. As shown in Tab. III, our method significantly
outperforms SuperGlue in matching accuracy and speed.
Notably, while SuperGlue effectively detects similar objects,
it struggles to differentiate distinct ones. Moreover, although
Superglue performs better when provided with the contextual
background of objects [19], our approach involves comparing
objects with their identical counterparts in varying locations,
resulting in different background contexts. Consequently, this
leads to suboptimal performance when compared to utilizing
SuperGlue on images with the background removed.

3) Online runtime: As our method builds on the foun-
dations of Hydra [4], which can incrementally construct
a 3DSG in real-time, we will evaluate the performance of the
embedding model and instance matching in online matching
mode. Using EfficientNet-B2 as the backbone with an input
image size of 224 × 224, the embedding time was roughly
11ms per instance mask [21]. Fig. 5 shows the embedding
model’s online matching performance on a re-scan in the
CoffeeRoom scene, peaking at about 200ms for 13 masks.
For object node processing, which includes visual embedding
comparisons and position history optimization, the CPU-
based operations result in negligible latency. While there
is still room for optimization, REACT achieves an average
frame rate of 3 to 4Hz when mapping with a reconstruction
resolution of 0.025m. It is worth noting that the input stream
of RGB-D images for 3DSG construction operates at 5Hz,
and the 3DSG construction by Hydra averages at 4Hz.

VII. DISCUSSIONS

As demonstrated in our experiments in Sec. VI-B, REACT
can reuse a 3DSG and transfer attributes in real-time. The
most notable transferable features in our work are the library
of images and the accumulated average visual embeddings.
By combining these features with attribute clustering, our
method can enhance an object’s information pool with mem-
ories of its past states and data from similar objects.

However, the list of shareable and transferable features
extends beyond just images and visual embeddings. A prac-
tical extension is the inclusion of more powerful, albeit
computationally expensive, features, e.g., VLM embeddings.
These could be efficiently transferred to new locations,
enabling the robot to match the user queries while executing
tasks in a dynamic environment. The works of Gu et al. [2]
and Werby et al . [3] have demonstrated the efficacy of such
features, and we believe our work provides a link to bridge
the usability gaps in these 3DSG frameworks.

REACT’s shared attributes also benefit object reconstruc-
tion. As the robot traverses the environment, it collects
point clouds of objects, which might be incomplete due
to occlusions or sensor noise. By aggregating nodes of
similar objects, it becomes possible to reconstruct more
accurate representations. Improved object reconstruction, in
turn, enhances the construction and maintenance of 3DSG by
offering more precise node boundaries and reducing noise.

While REACT represents a promising step towards adapt-
ability for mobile robots in changing environments, it still
has some limitations. A common failure mode for REACT
stems from errors in scene graph construction, such as
splitting a single object into multiple object nodes, merging
nearby objects into one, or failing to register some objects.
Accurately constructing object nodes in a scene graph is
particularly challenging in environments with many adjacent
objects, especially when there is noisy instance segmentation
and unreliable sensor depth maps. Potential areas for im-
provement include, but are not limited to, utilizing more ac-
curate segmentation models, applying multi-resolution object
representation to allow for a more fine-grained representation
of smaller objects and avoid faulty object merging [12],
and sensor fusion techniques to achieve more accurate point
clouds.

Additionally, REACT’s performance depends on the vi-
sual difference threshold, which requires some amount of
parameter tuning. Moreover, our method necessitates pre-
training the embedding model during the robot’s first visit to
a scene, which impacts its ability to generalize. Exploring the
potential for generalization in visual-based instance matching
using larger datasets and more advanced model architectures
could be an interesting avenue for future research.

VIII. CONCLUSION

In this work, we present REACT, a novel framework
to cluster object instances and leverage this clustering to
update object nodes in a 3DSG in real-time as a robot
revisits a scene. Additionally, we propose an efficient image-
based method for comparing objects’ appearances. We eval-



uated our method through experiments conducted in a sim-
ulated environment and various real-world settings using
data gathered from a real robot platform. Our experimental
results provide evidence that clustering object instances and
averaging their visual embeddings can enhance instance
matching performance over a non-clustering approach while
maintaining real-time processing speed. Our work constitutes
a first step towards reusable and adaptable spatio-semantic
representations, which are a necessary component for robots
to operate in rich dynamic human environments.
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